All-atom molecular-level computational analyses of polyurea/fused-silica interfacial decohesion caused by impinging tensile stress-waves
نویسندگان
چکیده
Purpose – The purpose of this paper is to address the problems of interaction of tensile stress-waves with polyurea/fused-silica and fused-silica/polyurea interfaces, and the potential for the accompanying interfacial decohesion. Design/methodology/approach – The problems are investigated using all-atom non-equilibrium molecular-dynamics methods and tools. Before these methods/tools are employed, previously determined material constitutive relations for polyurea and fused-silica are used, within an acoustic-impedance-matching procedure, to predict the outcome of the interactions of stress-waves with the material-interfaces in question. These predictions pertain solely to the stress-wave/interface interaction aspects resulting in the formation of transmitted and reflected stressor release-waves, but do not contain any information regarding potential interfacial decohesion. Direct molecular-level simulations confirmed some of these predictions, but also provided direct evidence of the nature and the extent of interfacial decohesion. To properly model the initial state of interfacial cohesion and its degradation during stress-wave-loading, reactive forcefield potentials are utilized. Findings – Direct molecular-level simulations of the polyurea/fused-silica interfacial regions prior to loading revealed local changes in the bonding structure, suggesting the formation of an interphase. This interphase was subsequently found to greatly affect the polyurea/fused-silica decohesion strength. Originality/value – To the authors’ knowledge, the present work is the first public-domain report of the use of the non-equilibrium molecular dynamics and reactive force-field potentials to study the problem of interfacial decohesion caused by the interaction of tensile waves with material interfaces.
منابع مشابه
Mixed-Mode Failure of Thin Films Using Laser-Generated Shear Waves
A new test method is developed for studying mixed-mode interfacial failure of thin films using laser generated stress waves. Guided by recent parametric studies of laser-induced tensile spallation, we successfully extend this technique to achieve mixed-mode loading conditions. By allowing an initial longitudinal wave to mode convert at an oblique surface, a high amplitude shear wave is generate...
متن کاملEffect of particle size and volume fraction on tensile properties of fly ash/polyurea composites
Fly ash, which consists of hollow particles with porous shells, was introduced into polyurea elastomer. A one-step method was chosen to fabricate pure polyurea and the polyurea matrix for the composites based on Isonate® 2143L (diisocyanate) and Versalink® P-1000 (diamine). Scanning electron microscopy was used to observe the fracture surfaces of the composites. Particle size and volume fractio...
متن کاملViscoelastic Properties and Shock Response of Coarse-Grained Models of Multiblock versus Diblock Copolymers: Insights into Dissipative Properties of Polyurea
We compare and contrast the microstructure, viscoelastic properties, and shock response of coarse-grained models of multiblock copolymer and diblock copolymers using molecular dynamics simulations. This study is motivated by the excellent dissipative and shock-mitigating properties of polyurea, speculated to arise from its multiblock chain architecture. Our microstructural analyses reveal that ...
متن کاملDirect extraction of rate-dependent traction–separation laws for polyurea/steel interfaces
Polyurea coatings on steel form tough, flexible and chemically resistant surfaces, making them ideal for a variety of applications. An important issue for polyurea coatings in some cases is their adhesion to steel under various loading conditions in aggressive environments. In this paper, adhesion was examined using steel/polyurea/steel sandwich specimens and interfacial fracture mechanics. The...
متن کاملTENSILE AND FRACTURE CHARACTERISTICS OF A SIC- PARTICLE-REINFORCED 7075 ALUMINIUM ALLOY
Fracture behavior of a 7075 aluminium alloy reinforced with 15 Vol%. SiC particles was studied after T6 and annealing heat treatments under uniaxial tensile loading at room temperature. The scanning electron microscopy of fractured surfaces and EDS analysis showed:, that fracture mechanism changed from due mainly to fractured particle in T6 condition to interface decohesion in samples in anneal...
متن کامل